Solutions for Stat 512 — Take home exam 11

1. Let Y7, ...,Y, be independent Poisson random variables with means A1, ..., A, respectively. Find:

a. Probability functionof U = > | Y;.  (Hint: Using mgf technique.) (10 pts)

b. Conditional probability function of Y7, given that U = m.

(Take a short review of conditional probability
in 511). (10 pts)

Solution:

a. ForYy,...,Y,, the mgfis my,(t) = ¢*i(¢'=1) Hence,
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Hence U follows a Poisson distribution with parameter » ;- | \;.

b.
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P Y, = m) since Y7 are independent with (Y5, Ys,...,Y},)

Now, from part (a), we know that ) ;" , ¥; follows Poisson (3" , \;) and > ; Y; follows Poisson (3" ; ;).
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Hence, the conditional distribution follows a Binomial distribution with m trials and p =

2.1fY1,...,Y, are independent, uniformly distributed random variables on the interval [0, 6].

a. Find joint density for (Y1), Y(5,)). (10 pts)

Y,
b. Find joint density for (Uy, Us) where Uy = % and Uz = Y{;,). (15 pts)
(n)

c. Are U; and Us independent? Briefly discuss your reason. (10 pts)
d. If 6 = 1, show that Y, the kth-order statistic, has a beta distribution. Identify o and 8. (15 pts)
Solution:

a. Since Y1, ..., Y, follow Unif]0, 6], the pdf and the cdf are:



Hence,
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Hence,
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c. Since the joint density of U;, U can be written into two pieces which only depends on U; and Uy separately, Uy
and Us are independent.
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Hence, Yy follows Beta distribution with a = kand 8 =n — k + 1.
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3. Suppose that X1,...,X,, and Y7,...,Y,, are independent random samples, with the variables X; normally
distributed with mean p; and variances a% and the variables Y; normally distributed with mean w2 and variances
o3. The difference between the sample means, X — Y, is then a linear combination of m -+ n normally distributed
random variables and, is itself normally distributed.



a. Find E(X —Y). (10 pts)
b. Find var(X —Y). (10 pts)

c. Suppose that 0? = 2 and 05 = 2.5, and m = n. Find the sample sizes so that (X — Y') will be within 1 unit
of (11 — pe) with probability (at least) 0.95. (10 pts)

Solution:

a. X — Y can be written as linear combinations of X!s and Y] s as following:
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Recall thatif L = a1 Y] +a2YQ+ -+a, Y, where as are some constants, Y; ~ N (j;,02) and Y/ s are independent,
then L ~ N(3" a;pi, Y a?0?). Therefore,
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Hence, E(X —Y) = ju1 — po.

s
b. From part (a), we know that var(X —Y) = -1 4+ -2,
m o n

- — 4.5
c.LetU =X —-Y,thenU ~ N(u = p1 — 2, W)’ where N = m = n. The question now is to determine the
value of N such that P(p —1 < U < p+1) > 0.95.
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By looking at the standard normal table or through R, we know that

1
———— < —1.96 = N > (1.96  V4.5)> = N > 17.3 = N = 18.
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Extra credit.
4. Let Y7 and Y3 be independent and uniformly distributed over the interval (0, 1). Find P(2Y(}) < Y{q)).
Solution:

First we find the joint distribution of Y(;y and Y{3), since f(y) = 1 and F'(y) = y fory € (0, 1), we have

2!
Sy Yoy W1, 2) = m(yl)o(yz —y)’(1—g)’-1-1=2, 0<yj<y <l

Hence, for the regions in the figure below, we can find
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